1.0 The Use of Enteral Nutrition vs. Parenteral Nutrition

Question: Does enteral nutrition compared to parenteral nutrition result in better outcomes in the critically ill adult patient?

Summary of evidence: There were nineteen level 2 studies and one level 1 study (Woodcock et al) that were reviewed and meta-analyzed. In the Woodcock study, data from ICU patients only were abstracted and there were 11/38 patients that crossed over between EN and PN group after randomization. There have been two more recent, large RCTs, Harvey 2014 and Reignier 2017, which enrolled 2400 and 2410 patients, respectively, across 33 and 44 sites. Other more recent smaller trials included patients fasting for at least 14 days (Xi 2014), patients with moderate traumatic brain injury (Meirelles 2011) and patients with severe acute pancreatitis (Wang 2013, Sun 2013). Apriori, we considered that the harmful effect of PN may be associated with relative overfeeding and hyperglycemia. Accordingly, we conducted a subgroup analysis to determine the effect of excess calories (PN compared to EN) and higher glucose levels (across groups). The Moore 1992 study, which had been included in the 2009 summary, was reviewed again and excluded since it reports results of a meta-analysis and the individual studies have been included. Given concerns about population in the Mereilles 2011 and Wang 2013 studies not being critically ill as no mention of ventilation status and some missing data in the latter study, a sensitivity analysis was also done excluding these two studies.

Mortality: In the two largest studies (Harvey and Reignier), there were no significant differences between the parenteral group and the enteral group in 30 or 28 day mortality (P = 0.57 and 0.33, respectively) or 90 day mortality (P = 0.4 and 0.28, respectively) or hospital mortality (P = 0.44 and 0.25, respectively). However, both studies showed a trend in the reduction in ICU mortality, favoring the PN group (P = 0.13 and 0.17, respectively). When these data were aggregated with the other 16 studies reporting on mortality, there was no difference in overall mortality between the groups receiving EN or PN (RR 1.03, 95% CI 0.93, 1.14, p=0.36, heterogeneity l²=6%, figure 1). When the trials in which the PN group were fed more calories than the EN group were aggregated, there was no effect seen (RR 1.19, 95% CI 0.86, 1.64, p = 0.30, heterogeneity l²=31%; figure 1). Similarly, when the trials in which the PN and EN groups were fed isocalorically were aggregated, there was no effect on mortality (RR 1.03, 95% CI 0.93, 1.14, p=0.6, heterogeneity l²=0%; figure 1). There was no difference in these subgroups (p=0.40; figure 1). In subgroup analysis comparing studies in which the PN group had higher blood sugars than the EN group to studies in which there was no difference in blood sugars, showed that increased mortality in the PN groups could not be explained by hyperglycemia (RR 0.93, 95% CI 0.30, 2.90, p=0.90, heterogeneity l²=0%; figure 2). In a sensitivity analysis excluding Mereilles 2011, Wang 2013, there was still no difference in mortality between groups (RR 1.05, 95% CI 0.95, 1.15, p=0.32, heterogeneity l²=7%; figure not shown). When data from the 6 studies reporting on ICU mortality were aggregated, there was no effect seen (RR 1.04, 95% CI 0.97, 1.12, p = 0.28, heterogeneity l²=0%, figure 3). There was also no effect seen when looking at subgroups where the PN group was fed more than the EN group and where the two groups were fed isocalorically (p = 0.38 and 0.71, respectively, figure 3).

Infections: When the 12 studies which reported on patients with infectious complications were statistically aggregated, the meta-analysis showed that EN compared to PN was associated with a significant reduction in the incidence of infectious complications (RR 0.74, 95% CI 0.59, 0.91,

p=0.005, heterogeneity I²=42%; figure 4). When the trials in which the PN group were fed more calories than the EN group were aggregated, EN compared to PN was also associated with a significant reduction in the incidence of infectious complications (RR 0.58, 95% CI 0.39, 0.88, p=0.009, heterogeneity I²=53%; figure 4). When the trials in which the PN and EN groups were fed isocalorically were aggregated, EN compared to PN had no effect on infectious complications (RR 0.94, 95% CI 0.80, 1,10, p=0.44, heterogeneity I²=0%; figure 4). There was a significant difference in these subgroups (p=0.03; figure 4). Another subgroup analysis showed that there was a trend between the increase in infections and hyperglycemia (RR 0.79, 95% CI 0.56, 1.11, p=0.17, heterogeneity I²=0%; figure 5). In a sensitivity analysis excluding Mereilles 2011, EN compared to PN was associated with a significant reduction in infectious complications (RR 0.66, 95% CI 0.50, 0.86, p=0.003, heterogeneity I²=38%, figure not shown.

LOS, Ventilator days: A total of 9 studies reported on hospital length of stay (in mean and standard deviation) and when the data were aggregated, no effect was seen on hospital LOS (WMD -1.35, 95% CI -3.52, 0.82, p=0.22, heterogeneity l²=70%; figure 6). Only 6 studies reported on ICU LOS (in mean and standard deviation) and when the data were aggregated, the use of EN was associated with a reduction in ICU LOS (WMD -2.12, 95% CI -4.20, -0.04, p=0.05, heterogeneity l²=94%; figure 7). A total of 5 studies reported on length of mechanical ventilation (in mean and standard deviation) and when the data were aggregated, there was a trend towards a reduction in ventilator days in the EN fed group (WMD -1.23, 95% CI - 2.80, 0.34, p=0.13, heterogeneity l²=87%, figure 8).

Nutritional complications: Of the 13 studies that reported on nutritional intake, 5 found that PN was associated with a higher calorie intake (Rapp, Young, Moore, Kudsk, Woodcock {Blood sugar values in the Woodcock pertain to the entire group, not the ICU population), the remaining 8 reported no significant difference in intakes between the groups (Adams, Hadley, Cerra, Dunham, Borzotta, Kalfarantzos, Wang, Harvey). A total of 7 studies reported on hyperglycemia and in 4 of these, EN was associated with a lower incidences of hyperglycemia compared to PN (Adams p<0.001), (Borzotta p<0.05, Kalfarentzos) (Mereilles p<0.01). Three studies showed no difference in blood sugars between the groups receiving EN and PN (Moore 1989, Rapp, Harvey). Four studies showed that EN was associated with an increase in diarrhea (Cerra p<0.05, Young, Kudsk p<0.01, Harvey) while one showed an association with EN and a reduction in diarrhea (Borzotta p<0.05) and one study showed no difference (Adam).

Other Complications: EN was also associated with an increase in vomiting (Cerra p<0.05), Harvey 2014 p <0.001). One study found less favourable neurological outcome at 3 months (p =0.05) in brain injured patients (Young, p=0.05), though this significance disappeared after 6 months and 1 year. More overall nutrition related complications were noted in EN vs PN (Dunham). Seven studies reported on diarrhea. There were significant reductions in the incidence of hypoglycemia (44 patients [3.7%] vs. 74 patients [6.2%]; P = 0.006) in the parenteral group in the largest study (Harvey 2014)

Cost: Four studies reported a cost savings with the use of EN vs PN (Adams, Cerra, Borzotta and Kalfarentzos).

Quality of Life (QOL) Outcomes: In a second publication (Harvey 2016), quality of life from the Harvey 2014 study was reported. In the trial, the EuroQol 5-dimension (5-level version) questionnaire (EQ-5D-5L) and a Health Services Questionnaire (to evaluate health and nutrition related

quality of life (QOL)) were completed at 90 days post randomization and 1 year post-randomization with survivors. At 90 days and 1 year post randomization, Harvey et al found that health components from the EQ-5D-5L questionnaire were similar between groups. The results for nutrition related QOL were reported on a scale from 1 (worst possible satisfaction) to 7 (best possible satisfaction). At 90 days post-randomization, there was no difference in the mean response between the PN (mean (SD) of 5.2 (1.6, n=405)) and EN groups (5.1 (1.7, n=378)) (mean difference 0.10, 95% CI, -0.14, 0.33, p=0.43) (data not shown in table). At 1 year, there was also no significant difference (5.3 (1.6) in the PN group (n=338) vs 5.4 (1.6) in the EN group (n=322), mean difference -0.10, 95% CI, -0.35, 0.14, p=0.41) (data not shown in table).

Conclusions:

- 1) The use of EN compared to PN has no effect on mortality in critically ill patients.
- 2) The use of EN compared to PN is associated with a reduction in the number of infectious complications in the critically ill in trials where patients in the PN group received more calories than in the EN group.
- 3) The use of EN compared to PN may be associated with a reduction in ICU LOS and ventilator days, but it has no effect on hospital LOS. Significant heterogeneity limits the inferences from these aggregated analyses.
- 4) The use of EN compared to PN may not be associated with an improvement in calories due to underfeeding in both groups
- 5) The use of EN may be associated with increased episodes of vomiting.
- 6) There is no difference between EN and PN in terms of patient reported outcomes

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis Level 2 study: If any one of the above characteristics are unfulfilled.

Table 1.	Randomized studies e	valuating EN vs	PN in critically	ill patients

Study	Population	ation Methods Intervention Mortality # (%)† (score) EN PN			Infections # (%)‡ EN PN		
1. Rapp 1983	Head Injured patients N=38 (<ideal weight)<br="">Single-centre</ideal>	C.Random: not sure ITT: no Blinding: no (4)	EN vs PN	9/18 (50)	3/20 (15)	NR	NR
2. Adams 1986	Trauma patients undergoing laporotomy N=46 36/46 ICU patients Single-centre	C.Random: not sure ITT: yes Blinding: no (8)	EN vs PN	1/23 (4)	3/23 (13)	15/23 (65)	17/23 (74)
3. Young 1987	Brain injured patients N=58 (N=51 randomized) Single-centre	C.Random: not sure ITT: no Blinding: no (6)	EN vs PN	10/28 (36)	10/23 (43)	5/28 (18)	4/23 (17)
4. Peterson 1988	Critically ill patients with abdominal trauma N=59 Single-centre	C.Random: not sure ITT: no Blinding: no (5)	EN vs PN	NR	NR	2/21 (10)	8/25 (32)
5. Cerra 1988	ICU patients post sepsis N=70 (hypermetabolic patients) Single-centre	C.Random: not sure ITT: no Blinding: no (2)	EN vs PN	ICU 7/31 (22)	ICU 8/35 (23)	NR	NR
6. Moore 1989	Abdominal trauma patients N=75 Single-centre	C.Random: yes ITT: no Blinding: no (10)	EN vs PN	NR	NR	5/29 (17)	11/30 (37)
7. Kudsk 1992	Abdominal trauma N=98 Single-centre	C.Random: not sure ITT: no Blinding: single (10)	EN vs PN	ICU 1/51 (2)	ICU 1/45 (2)	9/51 (16)	18/45 (40)

8. Dunham 1994	Blunt trauma N=38 Single-centre	C.Random: not sure ITT: no Blinding: no (8)	EN vs PN	1/12 (7)	1/15 (8)	NR	NR
9. Borzotta 1994	Closed head injury N=59 Single-centre	C.Random: not sure ITT: no Blinding: no (6)	EN vs PN	5/28 (18)	1/21 (5)	51/28 per group	39/21 per group
10. Hadfield 1995	ICU patients, mainly cardiac bypass N=24 Single-centre	C.Random: not sure ITT: no Blinding: no (7)	EN vs PN	ICU 2/13 (15)	ICU 6/11 (55)	NR	NR
11. Kalfarentzos 1997	Severe acute pancreatitis N=38 Single-centre	C.Random: not sure ITT: no Blinding: single (9)	EN vs PN	ICU 1/18 (6)	ICU 2/20 (10)	5/18 (28)	10/20 (50)
12. Woodcock 2001	Patients needing nutrition support N=562 ICU patients N=38 (all degrees of malnutirition) Single-centre	C.Random: yes ITT: yes Blinding: single (12)	EN vs PN	9/17 (53)	5/21 (24)	6/16 (38)	11/21 (52)
13. Casas 2007	Severe acute pancreatitis; ICU≥72 hrs N=22 Single-centre	C.Random: no/unsure ITT: Yes Blinding: No (8)	EN vs PN	Hospital 0/11 (0)	Hospital 2/11 (18)	1/11 (9)	3/11 (27)
14. Chen 2011	Elderly Patients in respiratory intensive care unit N=147 Single-centre	C.Random: Yes ITT: Yes Blinding: No (7)	EN vs PN	20-day 11/49 (22)	20-day 10/49 (20)	5/49 (10)	18/49 (37)

15. Meirelles 2011	Adult patients with moderate traumatic brain injury N=22 Single-centre	C.Random: No ITT: No Blinding: No (5)	EN vs PN	Unspecified 1/12 (8.3)	Unspecified 1/10 (10)	Total infectious complications 2/12 (16.7) Pneumonia (cases) 2/12 (16.7) Sepsis (cases) 0	Total infectious complications 4/10 (40) Pneumonia (cases) 2/10 (20) Sepsis (cases) 2/10 (20)
16. Wang 2013	Patients 18-45 years with severe acute pancreatitis N=183 Single-centre	C.Random: No ITT: No Blinding: Double (7)	EN vs PN	Hospital 3/61 (5)	Hospital 7/60 (12)	Pancreatic sepsis 13/61 (21) MODS 15/61 (24.6)	Pancreatic sepsis 24/60 (40) MODS 22/60 (36.7)
17. Sun 2013	Severe acute pancreatitis admitted to surgical ICU N=60 Single-centre	C.Random: No ITT: No Blinding: No (6)	EN vs PN	Hospital 2/30 (7)	Hospital 1/30 (3)	Pancreatic 3/30 (10) MODS 5/30 (17) SIRS 12/30 (40)	Pancreatic 10/30 (33) MODS 13/30 (43) SIRS 22/30 (73)
18. Harvey 2014	Adult patients admitted to a general ICU N=2400 Multi-centre	C.Random: Yes ITT: Yes Blinding: No (8)	EN vs PN	ICU 352/1197 (29.4) Hospital 450/1186 (37.9) 30-day 409/1195 (34.2) 90-day 464/1188 (39.1)	ICU 317/1190 (26.6) Hospital 431/1185 (36.4) 30-day 393/1188 (33.1) 90-day 442/1184 (37.3)	Total infectious complications 194/1197 (16.2)** Infectious complications per pt 0.21 +/- 0.5 Pneumonia 143/1197 (11.9) Bloodstream inf 21/1197 (1.8) Surgical inf 12/1197 (1.0)	Total infectious complications 194/1191 (16.3)** Infectious complications per pt 0.22 +/- 0.6 Pneumonia 135/1191 (11.3) Bloodstream inf 27/1191 (2.9) Surgical inf 10/1191 (0.8)
19. Xi 2014	ICU pts fasting at least 14 days, eligible for EN. Single Centre. N=45	C.Random: No ITT: Yes Blinding: No (7)	EN vs PN	28-day 0/22	28-day 0/23	Positive blood cultures 4/22 Sepsis 4/22 (17)	Positive blood cultures 0/23 Sepsis 5/23 (23)

20. Reignier 2017 Mechanically ventilated ICU pts receiving vasopressor support for shock. Multi-centre. N=2410 (11)	EN vs PN	ICU 429/1202 (33) Hospital 498/1202 (36) 28-day 443/1202 (37) 90-day 530/1185 (45)	ICU 405/1208 (31) Hospital 479/1208 (34) 28-day 422/1208 (35) 90-day 507/1192 (43)	ICU acquired 173/1202 (14)	ICU acquired 194/1208 (16)
--	----------	---	---	-------------------------------	-------------------------------

C.Random: concealed randomization

* median/mean values, no standard deviation hence not included in meta-analysis ‡ refers to the # of patients with infections unless specified ITT: intent to treat

NR: not reported † presumed hospital mortality unless otherwise specified \pm () : mean \pm Standard deviation (number) reported data pertaining to ICU patients only NS = not statistically significant

** data on ICU patients/infections obtained directly from author

Study	LOS	days	Ventilat	tor days	Co	ost	Other
Study	EN	PN	EN	PN	EN	PN	EN PN
1. Rapp 1983	Hospital 49.4*	Hospital 52.6*	10.3*	10.4*	NR	NR	Mean Calorie Intake (kcals) in study 685 1750 p=0.001 Nitrogen Intake (gms) 4.0 10.2 p=0.002 N balance/24hrs, p=0.002 -17.6 -10.9 Hyperglycemia no difference between groups
2. Adams 1986	ICU 13 ± 11 (19) Hospital 30 ± 21 (19)	ICU 10 ± 10 (17) Hospital 31 ± 29 (17)	12 ± 11 (17)	10 ± 10 (13)	\$1346/day	\$3729/day	Calorie Intake (kcals) in study 2088 2572 p=NS Caloric adequacy 73% 89% N balance/24 hrs -8.7 \pm 6.8 -4.1 \pm 4.6 Hyperglycemia (pt days) 24/242 (10) 49/220 (22) p<0.001 Line Problems 13/9 9/7 Diarrhea (days/pt) 3.5 3.8
3. Young 1987	NR	NR	NR	NR	NR	NR	$\begin{array}{c} \mbox{Calories + BEE x 1.75} \\ 59\% \pm 5.13\% & 75.6\% \pm 4.26\% \\ p=0.02 \\ \mbox{Protein Intake (gm/kg/day)} \\ 0.91 \pm 0.09 & 1.35 \pm 0.12 \\ p=0.004 \\ \mbox{Favourable Neurological Outcome (3 months)} \\ 17.9\% & 43.5\% \\ \mbox{Diarrhea} \\ 23/28 (82) & 13/23 (57) \\ \end{array}$

Table 1. Randomized studies evaluating EN vs. PN in critically ill patients (continued)

4. Peterson 1988	ICU 3.7 ± 0.8 (21) Hospital 13. 2 ± 1.6 (21)	ICU 4.6 ± 1.0 (25) Hospital 14.6 ± 1.9 (24)	NR	NR	NR	NR	Day 5 Calorie Intake (kcals) 2204 ± 173 2548 ± 85 $P=0.04$ Day 5 Nitrogen Intake (gms) 12.6 ± 1.0 14.8 ± 0.6
5. Cerra 1988	NR	NR	NR	NR	\$228 ± 59 /day	330 ± 61 /day	$\begin{array}{c c} \text{NON PROTEIN Calorie Intake} \\ 1684 \pm 573 & 2000 \pm 20 \\ & p=\text{NS} \\ Protein g/d \\ 80\pm 26 & 88\pm 20 \\ \text{N-balance/d} \\ -3.4\pm 10 & 0.4\pm 3.8 \\ \text{MOSF} \\ 7/31 (23) & 7/35 (20) \\ Diarrhea \\ 25/31 (81) & 9/35 (26) \\ \text{Vomiting} \\ 10/31 (32) & 10/35 (6) \end{array}$
6. Moore 1989	NR	NR	NR	NR	NR	NR	Non-protein Calorie Intake, day 5 1847 \pm 123 2261 \pm 60 p=0.01 Nitrogen intake, day 5, p=0.01 12.4 \pm 0.8 15.4 \pm 0.4 N balance, day 5, p=NS -0.3 \pm 0.1 0.1 \pm 0.8 Blood Sugars no difference between the groups Non-septic Complications 6/29 (21) 7/30 (23)
7. Kudsk 1992	Hospital 20.5 ± 19.9 (51)	Hospital 19.6 ± 18.8 (45)	2.8 ± 4.9 (51)	3.2 ± 6.7 (45)	NR	NR	NON PROTEIN Calorie Intake (kcal/kg/day) 15.7 \pm 4.2 p<0.05 Diarrhea 11/51 (22) 7/45 (16)

Г

8. Dunham 1994	NR	NR	NR	NR	NR	NR	Calorie Intake no difference between the groups Protein Intake no difference between the groups Nutrition-related Complications 3/12 (25) 2/15 (13)
9. Borzotta 1994	Hospital (assumed) 39 ± 23.1	Hospital (assumed) 36.9 ± 14	NR	NR	\$121,941	\$112,450	Calorie Intake no difference between the groups Placement Complications 3/28 (11) 0/21 (0) Aspiration 3/28 (11) 0/21 (0) Hyperglycemia 12/28 (44) 16/21 (76) P=<0.05 Diarrhea 30% 62%
10. Hadfield 1995	NR	NR	NR	NR	NR	NR	
11. Kalfarentzos 1997	ICU 11 (5-21)* Hospital 40 (25-83)*	ICU 12 (5-24)* Hospital 39 (22-73)*	15 (6-16)*	11 (7-31)*	£70/day savings	NR	Non-protein Calorie Intake (kcal/kg/day) 24.1 24.5 p=NS Protein Intake (gm/kg/day) 1.43 1.45 p=NS Hyperglycemia 4/18 (22) 9/20 (45) P=NR
12. Woodcock 2001	33.2 ± 43 (16)	27.3 ± 18.7 (18)	NR	NR	NR	NR	% Target Intake Achieved 54.1% 96.7% p<0.001 < 80% Target Intake 62.5% 6.3% p<0.001

13. Casas 2007	Hospital 30.2 (average)	Hospital 30.7 (average)	NR	NR	NR	NR	Kcal/kg/d, p=ns, n=11 in both groups 20.09 <u>+</u> 1.83 20.8 <u>+</u> 1.68 P=NS Nitrogen g/kg/d, p<0.005 0.148 <u>+</u> 0.016 0.186 <u>+</u> 0.009
14. Chen 2011	ICU 9.09 ± 2.75 Hospital 23.32 ± 5.6	ICU 9.60 ± 3.06 Hospital 22.24 ± 3.27	7.95 ± 2.11	8.23 ± 2.42	NR	NR	Non-infectious Complications 10/49 (20) 21/49 (43) Gastric Residuals 6/49 (12) 0/49 (0) Diarrhea 6/49 (12) 8/49 (16)
15. Meirelles 2011	ICU 14 (5-26)	ICU 14 (6-24)	NR	NR	NR	NR	Kcal over 5 days 5958 +/- 3619 6586 +/- 1052 P=0.34 Mean daily N-balance, p=0.34 -4.6g/day -5.9g/day Blood Glucose (mg/dl) 102.4 (91.6 – 113.2) 134.4 (122.6-146.2) p < 0.0111
16. Wang 2013	NR	NR	NR	NR	NR	NR	NR
17. Sun 2013	ICU 9 (5-14)	ICU 12 (8-21)	NR	NR	NR	NR	NR
18. Harvey 2014	ICU 11.3 <u>+</u> 12,5 (1197) Hospital 26.8 <u>+</u> 33.2 (1186)	ICU 12 <u>+</u> 13.5 (1190) Hospital 27.5 <u>+</u> 33.9 (1185)	8.2 <u>+</u> 9.3 (1197)	8.7 <u>+</u> 11,5 (1189)	NR	NR	Vomiting1/1197 (0.1)1/1197 (0.1)Aspiration/Regurgitation4/1197 (0.3)2/1191 (0.2)Diarrhea250/1197 (21)192/1191 (16.2)Total kcal received during intervention period (kcal/kg) 74 ± 44 89 ± 44 P=NRTotal protein received during intervention period (g/kg) 3 ± 2 3 ± 2
19. Xi 2014	ICU 8.52 <u>+</u> 3.6 (22) Hospital 20.43 <u>+</u> 10.49 (22)	ICU 20.33 <u>+</u> 4.47 (23) Hospital 38.76 <u>+</u> 15.04 (23)	2.96 <u>+</u> 1.74 (22)	8.62 <u>+</u> 3.6 (23)	Hospital cost x \$10 ⁴ 1.45 <u>+</u> 0.25	Hospital cost x \$10 ⁴ 3.47 <u>+ 0.69</u>	NR

20. Reignier 2017	ICU 9.0 (5.0-16.0) 13.7 <u>+</u> 16.1** N=1201 Hospital 17.0 (8.0-32.0) 25.1 <u>+</u> 28.4** N=1202	ICU 10.0 (5.0-17.0) 13.7 <u>+</u> 13.9** N=1207 Hospital 18.0 (9.0-33.0) 25.9 <u>+</u> 27.0** N=1208	10.7 <u>+</u> 14.4** N=1201	10.9 <u>+</u> 12.6** N=1207	NR	NR	432/1202 (36) 17.8 <u>+</u> 5.5 0.7 <u>+</u> 0.2	Diarrhea 393/1208 (33) Kcal/kg/d 19.6 <u>+</u> 5.3 P<0.0001 Protein g/kg/d 0.8 <u>+</u> 0.2 P<0.0001
C.Random: concealed randomization * median/mean values, no standard deviation bence not included in meta-analysis				ITT: intent to trea			\pm (): mean \pm Standard	()

* median/mean values, no standard deviation hence not included in meta-analysis ‡ refers to the # of patients with infections unless specified

NR: not reported † presumed hospital mortality unless otherwise specified reported data pertaining to ICU patients only NS = not statistically significant

** data obtained directly from authors

Table 2. Quality of Life (QOL) Outcomes

Study		QOL outcomes									
	EN		PN	EN		PN					
	N=544		N=558	N=473		N=467					
18. Harvey 2014	<u>EQ-5D-5</u>	iL components at 90 days post-rand	omization	EQ-5D-	5L components at 1 year post-randor	<u>mization</u>					
		Mobility: No problems			Mobility: No problems						
	168		170	172		166					
		Mobility: Slight problems			Mobility: Slight problems						
	108		118	90		93					
		Mobility: Moderate problems			Mobility: Moderate problems						
	142		135	99		114					
		Mobility: Severe problems			Mobility: Severe problems						
	76		75	80		65					
		Mobility: Extreme problems			Mobility: Extreme problems						
	50		60	32		29					
		Self-care: No problems			Self-care: No problems						
	293		299	287		280					
		Self-care: slight problems			Self-care: slight problems						
	113		106	71		87					
		Self-care: Moderate problems			Self-care: Moderate problems						
	72		85	71		60					
		Self-care: Severe problems			Self-care: Severe problems						
	29		31	24		20					
		Self-care: Extreme problems			Self-care: Extreme problems						
	37		37	20		20					
		Usual Activities: No problems			Usual Activities: No problems						

119 131	163 151
Usual Activities: Slight problems	Usual Activities: Slight problems
131 123 Usual Activities: Moderate problems	104 110 Usual Activities: Moderate problems
130 140	99 103
Usual Activities: Severe problems 67 74	Usual Activities: Severe problems 62 65
Usual Activities: Extreme problems	Usual Activities: Extreme problems
97 90	45 38
Pain/discomfort: No problems 178 173	Pain/discomfort: No problems 159 145
Pain/discomfort: Slight problems	Pain/discomfort: Slight problems
163 150 Pain/discomfort: Moderate problems	136 139 Pain/discomfort: Moderate problems
133 162	125 111
Pain/discomfort: Severe problems	Pain/discomfort: Severe problems
54 56 Pain/discomfort: Extreme problems	54 42 Pain/discomfort: Extreme problems
16 17	11 18
Anxiety/depression: No problems 239 242	Anxiety/depression: No problems 235 218
Anxiety/depression: Slight problems	Anxiety/depression: Slight problems
142 158	91 109
Anxiety/depression: Moderate problems 114 111	Anxiety/depression: Moderate problems 95 95
Anxiety/depression: Severe problems	Anxiety/depression: Severe problems
35 28	41 30
Anxiety/depression: Extreme problems 14 19	Anxiety/depression: Extreme problems 11 15
N=1197 N=1191	N=1197 N=1191
EQ-5D-5L Utility Score (survivors), mean (SD) 0.654 (0.283) 0.655 (0.282)	EQ-5D-5L Utility Score (survivors), mean (SD) 0.683 (0.292) 0.684 (0.285)
QALYs	QALYs
0.050 (0.049) 0.051 (0.048) P=0.46	0.335 (0.332) 0.348 (0.333) P=0.35
r =0.40	r =0.55

Note: Only studies reporting on these outcomes are shown in this table.

Figure 1. Studies comparing EN vs PN: Overall Mortality

	EN		PN			Risk Ratio		Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.2.1 Mortality (PN>E	-							
Rapp	9	18	3	20	0.6%	3.33 [1.07, 10.43]		
Young	10	28	10	23	1.8%	0.82 [0.42, 1.62]		
Kudsk	1	51	1	45	0.1%	0.88 [0.06, 13.70]		• • • • • • • • • • • • • • • • • • • •
Woodcock	9	17	5	21	1.1%	2.22 [0.92, 5.40]		
Chen	11	49	10	49	1.5%	1.10 [0.51, 2.35]		
Reignier Subtotal (95% CI)	498	1202 1365	479	1208 1366	47.9% 53.0%	1.04 [0.95, 1.15] 1.19 [0.86, 1.64]	2017	
Total events	538	1000	508	1000	001070	110 [0.00, 1.04]		
Heterogeneity: Tau ² =		iz - 7 0'		0-02	 ∩\· IZ = 210 	x		
Test for overall effect:			•	1 - 0.2	0,1 – 31	<i>N</i>		
restion overall ellect.	2 - 1.041	(i = 0.5	.0)					
1.2.2 Mortality (PN~E	N kcal)							
Adams	1	23	3	23	0.2%	0.33 [0.04, 2.97]	1986	· · · · · · · · · · · · · · · · · · ·
Borzotta	5	28	1	21	0.2%	3.75 [0.47, 29.75]	1994	
Dunham	1	12	1	15	0.1%	1.25 [0.09, 17.98]	1994	· · · · · · · · · · · · · · · · · · ·
Hadfield	2	13	6	11	0.4%	0.28 [0.07, 1.13]	1995	•
Kalfarentzos	1	18	2	20	0.2%	0.56 [0.05, 5.62]	1997	• • • • • • • • • • • • • • • • • • • •
Cerra	7	31	8	35	1.1%	0.99 [0.40, 2.41]	1998	
Casas	0	11	2	11	0.1%	0.20 [0.01, 3.74]	2007	• • • • • • • • • • • • • • • • • • •
Justo Meirelles	1	12	1	10	0.1%	0.83 [0.06, 11.70]	2011	· · · · · · · · · · · · · · · · · · ·
Nang	3	61	7	60	0.5%	0.42 [0.11, 1.55]	2013	
Bun	2	30	1	30	0.2%	2.00 [0.19, 20.90]	2013	
Xi	0	22	0	23		Not estimable	2014	
Harvey	450	1186	431	1185	43.9%	1.04 [0.94, 1.16]	2014	÷
Subtotal (95% CI)		1447		1444	47.0%	1.03 [0.93, 1.14]		♦
Fotal events	473		463					
Heterogeneity: Tau ² =	0.00; Ch	i ^z = 9.5	9, df = 10	(P = 0.	48); l ^z = 0°	%		
Test for overall effect:	Z= 0.52	(P = 0.6	i0)					
Total (95% CI)		2812		2810	100.0%	1.04 [0.95, 1.14]		
Total events	1011		971					ſ
Heterogeneity: Tau² =		i ^z = 16.9	- · ·	6 (P = (0.39); ² = 6	6%		
Test for overall effect:				- (* *				0.1 0.2 0.5 1 2 5 10
Test for subaroup diff		•	•	1 /D -	0.403 18-	n%		Favours EN Favours PN

Figure 2. Overall mortality in studies with hyperglycemia where the PN group had higher blood sugars than the EN group

5	EN		PN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Adams	1	23	3	23	27.1%	0.33 [0.04, 2.97]	1986	• • • • • • • • • • • • • • • • • • •
Borzotta	5	28	1	21	30.2%	3.75 [0.47, 29.75]	1994	
Kalfarentzos	1	18	2	20	24.2%	0.56 [0.05, 5.62]	1997	• • •
Meirelles	1	12	1	10	18.6%	0.83 [0.06, 11.70]	2011	• • •
Total (95% CI)		81		74	100.0%	0.93 [0.30, 2.90]		
Total events	8		7					
Heterogeneity: Tau ² =	= 0.00; Ch	i² = 2.8	1, df = 3 (P = 0.4	2); I ² = 09	6		
Test for overall effect:	Z = 0.13	(P = 0.9	90)					0.1 0.2 0.5 1 2 5 10 Favours EN Favours PN

Figure 3. ICU Mortality

5	EN		PN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
1.19.1 Mortality (PN>	EN kcal)							
Kudsk	1	51	1	45	0.1%	0.88 [0.06, 13.70]	1992	
Reignier	498	1202	479	1208	53.4%	1.04 [0.95, 1.15]	2017	•
Subtotal (95% CI)		1253		1253	53.5%	1.04 [0.95, 1.15]		•
Total events	499		480					
Heterogeneity: Tau ² =				P = 0.9	0); I ² = 0%			
Test for overall effect: .	Z = 0.89 ((P = 0.3	8)					
1.19.2 Mortality (PN~I	EN kcal)							
Hadfield	2	13	6	11	0.3%	0.28 [0.07, 1.13]	1995	
Kalfarentzos	1	18	2	20	0.1%	0.56 [0.05, 5.62]	1997	
Cerra	7	31	8	35	0.6%	0.99 [0.40, 2.41]	1998	
Harvey	450	1186	431	1185	45.6%	1.04 [0.94, 1.16]	2014	
Subtotal (95% CI)		1248		1251	46.5%	0.93 [0.63, 1.36]		+
Total events	460		447					
Heterogeneity: Tau ² =	•			P = 0.3	0); I ² = 19'	%		
Test for overall effect: .	Z = 0.38 ((P = 0.7	'1)					
Total (95% CI)		2501		2504	100.0%	1.04 [0.97, 1.12]		
Total events	959		927					
Heterogeneity: Tau ² =	0.00; Chi	z = 3.74	4, df = 5 (P = 0.5	9); I ^z = 0%			0.01 0.1 1 10 100
Test for overall effect: J	Z = 1.07 ((P = 0.2	:8)					Favours [experimental] Favours [control]
Test for subgroup diffe	erences:	Chi ^z = (0.34, df=	1 (P =	0.56), I ^z =	0%		· arease [experimental] · arease [control]

www.criticalcarenutrition.com

Critical Care Nutrition: Systematic Reviews December 2018

Figure 4. Studies comparing EN vs PN: Infectious complications

3	EN	3	PN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.1.1 Infections (PN>	EN kcal)							
Young	5	28	4	23	2.9%	1.03 [0.31, 3.39]	1987	
Peterson	2	21	8	25	2.1%	0.30 [0.07, 1.25]	1988	• · · · · · · · · · · · · · · · · · · ·
Moore	5	29	11	30	4.6%	0.47 [0.19, 1.19]	1989	-
Kudsk	9	51	18	45	7.3%	0.44 [0.22, 0.88]	1992	
Woodcock	6	16	11	21	6.4%	0.72 [0.34, 1.52]	2001	
Chen	5	49	18	49	4.7%	0.28 [0.11, 0.69]	2011	
Reignier Subtotal (95% CI)	173	1202 1396	194	1208 1401	24.2% 52.2%	0.90 [0.74, 1.08] 0.58 [0.39, 0.88]	2017	•
Total events	205		264					•
Heterogeneity: Tau ² =		i² = 12 [°]		(P = 0)	$(15)^{\circ}$ $(17 = 5)^{\circ}$	3%		
Test for overall effect	•		•	ų v.				
1.1.2 Infections (PN-	-EN kcal)							
Adams	15	23	17	23	15.2%	0.88 [0.60, 1.30]	1986	
Kalfarentzos	5	18	10	20	5.1%	0.56 [0.23, 1.32]		
Casas	1	11		11	1.0%	0.33 [0.04, 2.73]		· · · · · · · · · · · · · · · · · · ·
Justo Meirelles	2	12	4	10	2.0%	0.42 [0.10, 1.82]		
Harvey		1197		1191	24.5%	0.99 [0.83, 1.19]		+
Subtotal (95% CI)		1261		1255		0.94 [0.80, 1.10]		•
Total events	217		228					
Heterogeneity: Tau ² =	= 0.00; Ch	$i^2 = 4.03$	2. df = 4 (P = 0.4	0); I ² = 09	6		
Test for overall effect								
Total (95% CI)		2657		2656	100.0%	0.74 [0.59, 0.91]		•
Total events	422		492					-
Heterogeneity: Tau ² =		i ² = 18.9		1 (P = 0	0.06); I ^z =	42%		
Test for overall effect	•		•					0.1 0.2 0.5 1 2 5 10
Test for subgroup dif		•		1 (P =	0.03), I ² =	77.9%		Favours EN Favours PN

Figure 5. Infections in studies with hyperglycemia where the PN group had higher blood sugars than the EN group

5	EN		PN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Adams	15	23	17	23	79.0%	0.88 [0.60, 1.30]	1986	
Kalfarentzos	5	18	10	20	15.7%	0.56 [0.23, 1.32]	1997	
Meirelles	2	12	4	10	5.4%	0.42 [0.10, 1.82]	2011	• • •
Total (95% CI)		53		53	100.0%	0.79 [0.56, 1.11]		•
Total events	22		31					
Heterogeneity: Tau ² =	= 0.00; Ch	i² = 1.9	8, df = 2 (P = 0.3	7); I² = 09	6		
Test for overall effect:	Z=1.36	(P = 0.1	7)					Favours EN Favours PN

Figure 6. Hospital LOS

		EN			PN			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.3.1 Hospital LOS (P	N>EN ko	cal)								
Peterson	13.2	1.6	21	14.6	1.9	21	23.3%	-1.40 [-2.46, -0.34]	1988	-
Kudsk	20.5	19.9	51	19.6	18.8	45	5.9%	0.90 [-6.85, 8.65]	1992	
Woodcock	33.2	43	16	27.3	18.7	18	0.9%	5.90 [-16.87, 28.67]	2001	
Chen	23.32	5.6	49	22.24	3.27	49	21.0%	1.08 [-0.74, 2.90]	2011	-
Reignier Subtotal (95% CI)	25.1	28.4	1202 1339	25.9	27	1208 1341	19.6% 70.7%		2017	 ◆
Test for overall effect: 1.3.2 Hospital LOS (P		`	47)							
Adams	30	21	19	31	29	17	1.6%	-1.00 [-17.71, 15.71]	1986	
Borzotta	39	23.1	28	36.9	14	21	3.7%	• • •		
Harvey	26.8	33.2		27.5	33.9	1185	17.8%	-0.70 [-3.40, 2.00]		
Xi		10.49	22	38.76	15.04	23	6.2%			
Subtotal (95% CI)			1255			1246	29.3%			
Heterogeneity: Tau ² =	80.86; 0	⊃hi² = 1	9.37, d	f = 3 (P =	= 0.000	2); I ² = 8	35%			
Test for overall effect:	Z = 0.96	(P = 0.	34)							
Total (95% CI)			2594			2587	100.0%	-1.35 [-3.52, 0.82]		•
Heterogeneity: Tau² = Test for overall effect:	•		•	= 8 (P =	0.0008)); I² = 7()%			-20 -10 0 10 20
Test for subgroup diff			· ·	lf=1 (P	= 0.39),	.I²=0%	6			Favours EN Favours PN

Figure 7. ICU LOS

5		EN			PN			Mean Difference			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Random, 95% CI	
1.6.1 ICU LOS (PN>EN	I)											
Peterson	3.7	0.8	21	4.6	1	25	20.1%	-0.90 [-1.42, -0.38]	1988		-	
Chen	9.09	2.75	49	9.6	3.06	49	19.1%	-0.51 [-1.66, 0.64]	2011			
Reignier Subtotal (95% CI)	13.7	16.1	1201 1271	13.7	13.9	1207 1281	19.0% 58.2%	0.00 [-1.20, 1.20] -0.72 [-1.16, -0.28]	2017		•	
Heterogeneity: Tau² = Test for overall effect: :			•	= 2 (P =	0.37);	I ² = 0%						
1.6.2 ICU LOS (PN~EN	l kcal)											
Adams	13	11	19	10	10	17	6.3%	3.00 [-3.86, 9.86]	1986			
Xi	8.52	3.6	22	20.33	4.47	23	16.1%	-11.81 [-14.18, -9.44]	2014	+		
Harvey Subtotal (95% CI)	11.3	12.5	1197 1238	12	13.5	1190 1230	19.3% 41.8%	-0.70 [-1.74, 0.34] - 3.50 [-12.23, 5.24]	2014			
Heterogeneity: Tau ² = Test for overall effect: .				df = 2 (F	P < 0.0	0001);	I²= 97%					
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: . Test for subgroup diffe	Z = 2.00	(P = (D.05)			001); I ^z		-2.12 [-4.20, -0.04]		⊢ -10	-5 0 5 Favours EN Favours PN	10

Figure 8. Mechanical Ventilation

	EN			PN			Mean Difference			Mean Diff	erence	
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Randon	n, 95% Cl	
12	11	17	10	10	13	3.6%	2.00 [-5.54, 9.54]	1986	-			
2.8	4.9	51	3.2	6.7	45	15.0%	-0.40 [-2.77, 1.97]	1992				
7.95	2.11	49	8.23	2.42	49	21.2%	-0.28 [-1.18, 0.62]	2011			-	
8.2	9.3	1197	8.7	11.5	1189	21.4%	-0.50 [-1.34, 0.34]	2014				
2.96	1.74	22	8.62	3.6	23	18.2%	-5.66 [-7.30, -4.02]	2014		—		
10.7	14.4	1201	10.9	12.6	1207	20.6%	-0.20 [-1.28, 0.88]	2017			-	
		2537			2526	100.0%	-1.23 [-2.80, 0.34]			-		
2.81; Cl	hi = 3	7.28, df	f= 5 (P ·	< 0.00	001); I²	= 87%			-10 -	+ + ·5 0		1
	12 2.8 7.95 8.2 2.96 10.7	Mean SD 12 11 2.8 4.9 7.95 2.11 8.2 9.3 2.96 1.74 10.7 14.4	Mean SD Total 12 11 17 2.8 4.9 51 7.95 2.11 49 8.2 9.3 1197 2.96 1.74 22 10.7 14.4 1201	Mean SD Total Mean 12 11 17 10 2.8 4.9 51 3.2 7.95 2.11 49 8.23 8.2 9.3 1197 8.7 2.96 1.74 22 8.62 10.7 14.4 1201 10.9	Mean SD Total Mean SD 12 11 17 10 10 2.8 4.9 51 3.2 6.7 7.95 2.11 49 8.23 2.42 8.2 9.3 1197 8.7 11.5 2.96 1.74 22 8.62 3.6 10.7 14.4 1201 10.9 12.6	Mean SD Total Mean SD Total 12 11 17 10 10 13 2.8 4.9 51 3.2 6.7 45 7.95 2.11 49 8.23 2.42 49 8.2 9.3 1197 8.7 11.5 1189 2.96 1.74 22 8.62 3.6 23 10.7 14.4 1201 10.9 12.6 1207	Mean SD Total Mean SD Total Weight 12 11 17 10 10 13 3.6% 2.8 4.9 51 3.2 6.7 45 15.0% 7.95 2.11 49 8.23 2.42 49 21.2% 8.2 9.3 1197 8.7 11.5 1189 21.4% 2.96 1.74 22 8.62 3.6 23 18.2% 10.7 14.4 1201 10.9 12.6 1207 20.6%	Mean SD Total Weight IV, Random, 95% CI 12 11 17 10 10 13 3.6% 2.00 [-5.54, 9.54] 2.8 4.9 51 3.2 6.7 45 15.0% -0.40 [-2.77, 1.97] 7.95 2.11 49 8.23 2.42 49 21.2% -0.28 [-1.18, 0.62] 8.2 9.3 1197 8.7 11.5 1189 21.4% -0.50 [-1.34, 0.34] 2.96 1.74 22 8.62 3.6 23 18.2% -5.66 [-7.30, -4.02] 10.7 14.4 1201 10.9 12.6 1207 20.6% -0.20 [-1.28, 0.88] LSS37 LS257 LS258 LS258	Mean SD Total Mean SD Total Weight IV, Random, 95% CI Year 12 11 17 10 10 13 3.6% 2.00 [-5.54, 9.54] 1986 2.8 4.9 51 3.2 6.7 45 15.0% -0.40 [-2.77, 1.97] 1992 7.95 2.11 49 8.23 2.42 49 21.2% -0.28 [-1.18, 0.62] 2011 8.2 9.3 1197 8.7 11.5 1189 21.4% -0.50 [-1.34, 0.34] 2014 2.96 1.74 22 8.62 3.6 23 18.2% -5.66 [-7.30, -4.02] 2014 10.7 14.4 1201 10.9 12.6 1207 20.6% -0.20 [-1.28, 0.88] 2017	Mean SD Total Meight IV, Random, 95% CI Year 12 11 17 10 10 13 3.6% $2.00 [-5.54, 9.54]$ 1986 2.8 4.9 51 3.2 6.7 45 15.0% $-0.40 [-2.77, 1.97]$ 1992 7.95 2.11 49 8.23 2.42 49 21.2% $-0.28 [-1.18, 0.62]$ 2011 8.2 9.3 1197 8.7 11.5 1189 21.4% $-0.50 [-1.34, 0.34]$ 2014 2.96 1.74 22 8.62 3.6 23 18.2% $-5.66 [-7.30, -4.02]$ 2014 10.7 14.4 1201 10.9 12.6 1207 20.6% $-0.20 [-1.28, 0.88]$ 2017 2537 2526 100.0% -1.23 [-2.80, 0.34] 281 : CbiF = 37 28 df = $5 (P < 0.00001)$; F = 87%	Mean SD Total Meight IV, Random, 95% CI Year IV, Random 12 11 17 10 10 13 3.6% $2.00 [-5.54, 9.54]$ 1986 2.8 4.9 51 3.2 6.7 45 15.0% $-0.40 [-2.77, 1.97]$ 1992 7.95 2.11 49 8.23 2.42 49 21.2% $-0.28 [-1.18, 0.62]$ 2011 8.2 9.3 1197 8.7 11.5 1189 21.4% $-0.50 [-1.34, 0.34]$ 2014 2.96 1.74 22 8.62 3.6 23 18.2% $-5.66 [-7.30, -4.02]$ 2014 10.7 14.4 1201 10.9 12.6 1207 20.6% $-0.20 [-1.28, 0.88]$ 2017 2537 2526 100.0% -1.23 [-2.80, 0.34] $-1.23 [-2.80, 0.34]$	Mean SD Total Weight IV, Random, 95% CI Year IV, Random, 95% CI 12 11 17 10 10 13 3.6% $2.00 [-5.54, 9.54]$ 1986 2.8 4.9 51 3.2 6.7 45 15.0% $-0.40 [-2.77, 1.97]$ 1992 7.95 2.11 49 8.23 2.42 49 21.2% $-0.28 [-1.18, 0.62]$ 2011 8.2 9.3 1197 8.7 11.5 1189 21.4% $-0.50 [-1.34, 0.34]$ 2014 2.96 1.74 22 8.62 3.6 23 18.2% $-5.66 [-7.30, -4.02]$ 2014 10.7 14.4 1201 10.9 12.6 1207 20.6% $-0.20 [-1.28, 0.88]$ 2017 2537 2526 100.0% $-1.23 [-2.80, 0.34]$ 410.0 12.6 120.7 20.6% $-0.20 [-1.28, 0.34]$ 2537 2526 100.0

Table 3. Excluded Articles

#	Reason Excluded	Citation
1	Cancer patients, not ICU patients	Lim ST, Choa RG, Lam KH, Wong J, Ong GB. Total parenteral nutrition versus gastrostomy in the preoperative preparation of patients with carcinoma of the oesophagus. Br J Surg. 1981 Feb;68(2):69-72.
2	Cancer patients, not ICU patients	Sako K, Loré JM, Kaufman S, Razack MS, Bakamjian V, Reese P. Parenteral hyperalimentation in surgical patients with head and neck cancer: a randomized study. J Surg Oncol. 1981;16(4):391-402.
3	Unclear if ICU patients	Bauer E, Graber R, Brodike R et al. Ernahrungsphysiologische, immunologische und klinische parameter bei prospektiv randomisierten patienten unter enteraler oder parenteraler ernahrungstherapie nach dickdarmoperationen. Infusionstherapie 1984;11:165-167.
4	Patients not critically ill	Quayle AR, Mangnall D, Clark RG. A comparison of immediate post-operative enteral and parenteral nutrition in patients with gastric carcinoma. Clin Nutr 1984;3:35-39.
5	Not likely ICU patients	Seri S, Aquilio E. Effects of early nutritional support in patients with abdominal trauma. It J Surg Sci 1984;14:223-7.
6	Elective surgery patients	Wiedeck H, Merkle N, Herfarth Ch, Grunert A. Postoperative enteral nutrition following resection of the colon. Anaesthesist 1984;33:63-67.
7	Elective surgery patients	Costalat G, Vernhet J. Nutrition enterale postoperatoire precoce par catheter jejunal en chirurgie digestive lourde. Comparison avec la nutrition parenterale exclusive. Chirurgie 1985;111:708-714.
8	Elective surgery patients	Bower RH, Talamini MA, Sax HC. Postoperative enteral vs parenteral nutrition: A randomized controlled trial. Arch Surg 1986;121:1040-5.
9	Elective surgery patients	Fletcher JP, Little JM. A comparison of parenteral nutrition and early postoperative enteral feeding on the nitrogen balance after major surgery. Surgery 1986;100:21-4.
10	Pseudo-randomized	Hadley MN, Grahm TW, Harrington T. Nutritional support and neurotrauma: A critical review of early nutrition in forty-five acute head injury patients. Neurosurgery 1986;19:367-73.
11	No significant outcomes	Young B, Ott L, Haack D. Effect of total parenteral nutrition upon intracranial pressure in severe head injury. J Neurosurg 1987;67:76-80.
12	Not ICU patients	Greenberg GR, Fleming CR, Jeejeebhoy KN, Rosenberg IH, Sales D, Tremaine WJ. Controlled trial of bowel rest and nutritional support in the management of Crohn's disease. Gut. 1988 Oct;29(10):1309-15.
13	Elective surgery patients	Hamaoui E, Lefkowitz R, Olender L et al. Enteral nutrition in the early postoperative period: A new semi-elemental formula versus total parenteral nutrition. JPEN:J Parenter Enteral Nutr 1990;14:501-7.
14	Meta-analysis	Moore FA, Feliciano DV, Andrassy RJ et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications: The results of a meta-analysis. Ann Surg 1992;216:172-83.
15	Elective surgery patients	Von Meyenfeldt MF, Meijerink WJ, Rouflart MM, Builmaassen MT, Soeters PB.C. Perioperative nutritional support: a randomised clinical trial. lin Nutr. 1992 Aug;11(4):180-6.
16	Cancer patients, not ICU patients	González-Huix F, Fernández-Bañares F, Esteve-Comas M, Abad-Lacruz A, Cabré E, Acero D, Figa M, Guilera M, Humbert P, de León R, et al. Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis. Am J Gastroenterol. 1993 Feb;88(2):227-32.
17	Elective surgery	lovinelli G, Marsili I, Varrassi G. Nutrition support after total laryngectomy. JPEN J Parenter Enteral Nutr. 1993 Sep-Oct;17(5):445-8.

	patients	
18	Duplicate of 1992 study	Kudsk KA. Gut mucosal nutritional support - Enteral nutrition as primary therapy after multiple system trauma. Gut 1994;35:S52-S54.
19	Elective surgery patients	Wicks C, Somasundaram S, Bjarnason I et al. Comparison of enteral feeding and total parenteral nutrition after liver transplantation. Lancet 1994;344:837-40.
20	Elective surgery patients	Baigrie RJ, Devitt PG, Watkin DS. Enteral versus parenteral nutrition after oesophagogastric surgery: a prospective randomized comparison. Aust N Z J Surg. 1996 Oct;66(10):668-70.
21	Not a RCT, not ICU patients	Hernandez-Aranda JC, Gallo-Chico B, Ramirez-Barba EJ. Nutritional support in severe acute pancreatitis. Controlled clinical trial. Nutr Hosp 1996;11:160-6.
22	No significant outcomes	Suchner U, Senftleben U, Eckart T et al. Enteral versus parenteral nutrition: Effects on gastrointestinal function and metabolism. Nutrition 1996;12:13-22.
23	Not ICU patients	Georgiannos SN, Renaut AJ, Goode AW. Short-term restorative nutrition in malnourished patients: Pro's and con's of intravenous and enteral alimentation using compositionally matched nutrients. Int Surg 1997;82:301-306.
24	Cancer patients, not ICU patients	Gianotti L, Braga M, Vignali A, Balzano G, Zerbi A, Bisagni P, Di Carlo V. Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg. 1997 Nov;132(11):1222-9.
25	Not ICU pts	McClave SA, Greene LM, Snider HL, Makk LJ, Cheadle WG, Owens NA, Dukes LG, Goldsmith LJ. Comparison of the safety of early enteral vs parenteral nutrition in mild acute pancreatitis. JPEN J Parenter Enteral Nutr. 1997 Jan-Feb;21(1):14-20.
26	Cancer patients, not ICU patients	Reynolds JV, Kanwar S, Welsh FK, Windsor AC, Murchan P, Barclay GR, Guillou PJ. Does the route of feeding modify gut barrier function and clinical outcome in patients after major upper gastrointestinal surgery? JPEN J Parenter Enteral Nutr. 1997 Jul-Aug;21(4):196-201.
27	Cancer patients, not ICU patients	Sand J, Luostarinen M, Matikainen M. Enteral or parenteral feeding after total gastrectomy: prospective randomised pilot study. Eur J Surg. 1997 Oct;163(10):761-6.
28	Cancer patients, not ICU patients	Shirabe K, Matsumata T, Shimada M, Takenaka K, Kawahara N, Yamamoto K, Nishizaki T, Sugimachi K. A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resectionthe results of a randomized prospective study. Hepatogastroenterology. 1997 Jan-Feb;44(13):205-9.
29	Elective surgery patients	Braga M, Gianotti L, Vignali A, Cestari A, Bisagni P, Di C, V. Artificial nutrition after major abdominal surgery: Impact of route of administration and composition of the diet. Crit Care Med 1998;26:24-30.
30	Not ICU patients	Windsor ACJ, Kanwar S, Li AGK et al. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut 1998;42:431-5.
31	Elective surgery patients	Oláh A, Pardavi G, Belágyi T. [Early jejunal feeding in acute pancreatitis: prevention of septic complications and multiorgan failure][Article in Hungarian] Magy Seb. 2000 Feb;53(1):7-12.
32	Elective surgery patients	Bozzetti F, Braga M, Gianotti L, Gavazzi C, Mariani L. Postoperative enteral versus parenteral nutrition in malnourished patients with gastrointestinal cancer: A randomised multicentre trial. Lancet 2001;358:1487-92.
33	Elective surgery patients	Braga M, Gianotti L, Gentilini O, Parisi V, Salis C, Di C, V. Early postoperative enteral nutrition improves gut oxygenation and reduces costs compared with total parenteral nutrition. Crit Care Med 2001;29:242-8.

34	Meta-analysis	Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: A meta-analysis. Am J Clin Nutr 2001;74:534- 42.
35	Meta-analysis	Heyland DK Montalvo M, MacDonald S et al. Total parenteral nutrition in the surgical patient: a meta-analysis. Can J Surg 2001;44(2):102- 111.
36	Elective surgery patients	Pacelli F, Bossola M, Papa V et al. Enteral vs parenteral nutrition after major abdominal surgery: An even match. Arch Surg 2001;136:933-6.
37	Not ICU patients	Abou-Assi S. Craig K, O'Keefe SJ. Hypocaloric jejunal feeding is better than total parenteral nutrition in acute pancreatitis : results of a randomized comparative study. Am J Gastroenterology 2002;97(9):2255-2262.
38	Not Randomized	Huang YC, Yen CE, Cheng CH, Jih KS, Kan MN. Nutritional status of mechanically ventilated critically ill patients: comparison of different types of nutritional support. Clin Nutr 2002:101-7.
39	Pseudo-randomized	Olah A, Pardavi G, Belagyi T, Nagy A, Issekutz A, Mohamed GE. Early nasojejunal feeding in acute pancreatitis is associated with a lower complication rate. Nutrition 2002;18(3):259-62.
40	Elective surgery patients	Rayes N, Hansen S, Seehofer D, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition. 2002 Jul-Aug;18(7-8):609-15.
41	Not ICU patients	Gupta R, Patel K, Calder PC, Yaqoob P, Primrose JN, Johnson CD. A randomised clinical trial to assess the effect of total enteral and total parenteral nutritional support on metabolic, inflammatory and oxidative markers in patients with predicted severe acute pancreatitis (APACHE II > or =6). Pancreatology. 2003;3(5):406-13.
42	No clinical outcomes	Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World journal of gastroenterology: WJG 2003;9(9):2105-8.
43	Not ICU patients	Louie BE, Noseworthy T, Hailey D, Gramlich LM, Jacobs P, Warnock GL. 2004 MacLean-Mueller prize enteral or parenteral nutrition for severe pancreatitis: a randomized controlled trial and health technology assessment. Can J Surg. 2005 Aug;48(4):298-306.
44	Meta-analysis	Peter JV, Moran JL, Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005 Jan;33(1):213-20.
45	Meta-analysis	Simpson F, Doig GS. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005 Jan;31(1):12-23.
46	Not ICU patients	Eckerwall GE, Axelsson JB, Andersson RG. Early nasogastric feeding in predicted severe acute pancreatitis. A clinical, randomized study. Ann Surg 2006;244(6):959-967.
47	Unable to confirm if patients were in ICU	Petrov MS, Kukosh MV, Emelyanov NV. A randomized controlled trial of enteral versus parenteral feeding in patients with predicted severe acute pancreatitis shows a significant reduction in mortality and in infected pancreatic complications with total enteral nutrition. Dig Surg. 2006;23(5-6):336-44; discussion 344-5.
48	Control received non-standard EN formula (arginine)	Radrizzani D, Bertolini G, Facchini R, Simini B, Bruzzone P, Zanforlin G, et al. Early enteral immunonutrition vs. parenteral nutrition in critically ill patients without severe sepsis: a randomized clinical trial. Intensive care medicine 2006;32(8):1191-8.
49	No clinical outcomes	Chen Z, Wang S, Yu B, Li A. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients. Burns 2007;33(6):708-12.

50	Systematic review	Petrov MS, Zagainov VE. Influence of enteral versus parenteral nutrition on blood glucose control in acute pancreatitis: a systematic review. Clin Nutr. 2007 Oct;26(5):514-23.
51	Not ICU patients	Tian. [The morphological alterations of jejunal mucosa accepting early enteral nutrition for post-operative patients with severe acute pancreatitis]. Sichuan da xue xue bao Yi xue ban = Journal of Sichuan University Medical science edition 2007;38(2):264-7.
52	Meta-analysis	Cao Y, Xu Y, Lu T, Gao F, Mo Z. Meta-analysis of enteral nutrition versus total parenteral nutrition in patients with severe acute pancreatitis. Annals of Nutrition and Metabolism 2008;53(3-4):268-75.
53	Elective surgery patients	Farimani M, Bajestani N. Comparison of early enteral feeding versus parenteral nutrition after resection of esophageal cancer. <i>Journal of Critical Care</i> . 2008; 23(3):448
54	Pseudo-randomized	Lam NN, Tien NG, Khoa CM. Early enteral feeding for burned patientsan effective method which should be encouraged in developing countries. Burns. 2008 Mar;34(2):192-6.
55	Systematic review	Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: nutritional support in acute pancreatitis. Aliment Pharmacol Ther. 2008 Sep 15;28(6):704-12.
56	Not ICU patients	Cheng XT, Li SL, Liu GL, Yang XM, Lu J. [Effect of nutritional support on immune function in patients with severe pulmonary infection after renal transplantation]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2009;29(6):1159-62.
57	Pseudo-randomized	Doley RP, Yadav TD, Wig JD, Kochhar R, Singh G, Bharathy KG, Kudari A, Gupta R, Gupta V, Poornachandra KS, Dutta U, Vaishnavi C. Enteral nutrition in severe acute pancreatitis. JOP. 2009 Mar 9;10(2):157-62.
58	Elective surgery patients	Nagata S, Fukuzawa K, Iwashita Y, Kabashima A, Kinoshita T, Wakasugi K, Maehara Y. Comparison of enteral nutrition with combined enteral and parenteral nutrition in post-pancreaticoduodenectomy patients: a pilot study. Nutr J. 2009 Jun 11;8:24.
59	Systematic review	Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: Nutritional support in acute pancreatitis. Alimentary Pharmacology and Therapeutics 2008;28(6):704-12.
60	Elective surgery patients	Ryu J, Nam BH, Jung YS. Clinical outcomes comparing parenteral and nasogastric tube nutrition after laryngeal and pharyngeal cancer surgery. Dysphagia. 2009 Dec;24(4):378-86.
61	Not randomized	Vieira JP, Araujo GF, Azevedo JR, Goldenberg A, Linhares MM. Parenteral nutrition versus enteral nutrition in severe acute pancreatitis. Acta cirurgica brasileira / Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia 2010;25(5):449-54.
62	Elective surgery patients	Gencer A, Ozdemir Y, Sucullu I, Filiz AI, Yucel E, Akin ML, et al. The effects of enteral immunonutrient products and total parenteral nutrition in patients who underwent major abdominal surgery [Majör abdominal kanser cerrahisi uygulanan hastalarda total parenteral nutrisyon ve enteral immunonutrisyon kar ila t r Imas]. Trakya Universitesi Tip Fakultesi Dergisi 2010;27(4):404–10.
63	Pseudo-randomized	Altintas ND, Aydin K, Turkoglu MA, Abbasoglu O, Topeli A. Effect of enteral versus parenteral nutrition on outcome of medical patients requiring mechanical ventilation. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition 2011;26(3):322-9.
64	Meta-analysis	Cangelosi MJ, Auerbach HR, Cohen JT. A clinical and economic evaluation of enteral nutrition. Current medical research and opinion 2011;27(2):413-22.
65	Elective surgery patients	Klek S, Sierzega M, Turczynowski L, szykinski P, Sczcepanek K, Kulig J. (2011). Enteral and Parenteral Nutrition in the Conservative Treatment of Pancreatic Fistula: A Randomized Clinical Trial. 2011;141:157-163.

66	Meta-analyses	Wang X, Dong Y, Han X, Qi X-Q, Huang C-G, Hou L. (2013) Nutritional Support for Patients Sustaining Traumatic Brain Injury: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE. 8(3): e58838.
67	Subset of CALORIES trial. No new relevant clinical outcomes.	Kilner T, Bidgood E, Benham-Mirando S, Krol R, Brealey D. Nutritional support and mortality in critically ill adults - A subset analysis of the calories trial. Intensive Care Medicine Experimental. 2015;3.
68	Elective surgery patients	van Barneveld KW, Smeets BJ, Heesakkers FF, Bosmans JW, Luyer MD, Wasowicz D, Bakker JA, Roos AN, Rutten HJ, Bouvy ND, Boelens PG. Beneficial Effects of Early Enteral Nutrition After Major Rectal Surgery: A Possible Role for Conditionally Essential Amino Acids? Results of a Randomized Clinical Trial. Crit Care Med. 2016 Jun;44(6):e353-61.
69	Not critically ill	Perinel J, Mariette C, Dousset B, Sielezneff I, Gainant A, Mabrut JY, Bin-Dorel S, Bechwaty ME, Delaunay D, Bernard L, Sauvanet A, Pocard M, Buc E, Adham M. Early Enteral Versus Total Parenteral Nutrition in Patients Undergoing Pancreaticoduodenectomy: A Randomized Multicenter Controlled Trial (Nutri-DPC). Ann Surg. 2016 Nov;264(5):731-737.
70	Sub-study of Harvey 2014	Harvey SE, Parrott F, Harrison DA, Sadique MZ, Grieve RD, Canter RR, McLennan BK, Tan JC, Bear DE, Segaran E, Beale R, Bellingan G, Leonard R, Mythen MG, Rowan KM. A multicentre, randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES). Health Technol Assess. 2016 Apr;20(28):1-144.
71	No clinically significant outcomes; abstract; unlcear if RCT	Gundogan K, Dogan E, Coskun R, Muhtaroglu S, Sungur M, Ziegler T, Guven M. Association between the route of nutrition and adipokine hormones levels in critically ill patients: A pilot study. Intensive Care Medicine Experimental. Conference: 29th Annual Congress of the European Society of Intensive Care Medicine, ESICM 2016. Italy. 4 (no pagination), 2016.
72	Pseudo randomized	Fan MC, Wang QL, Fang W, Jiang Y, Li L, Sun P, et al. Early enteral combined with parenteral nutrition treatment for severe traumatic brain injury: effects on immune function, nutritional status and outcomes. Chinese Medical Science Journal 2016;31(4):213–20.
73	Meta analyses	Lewis SR, Schofield-Robinson OJ, Alderson P, Smith AF. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev. 2018 Jun 8;6:CD012276.
74	Meta analyses	Shi J, Wei L, Huang R, Liao L. Effect of combined parenteral and enteral nutrition versus enteral nutrition alone for critically ill patients: A systematic review and meta-analysis. Medicine (Baltimore). 2018 Oct;97(41):e11874.